Meta Information | Exercise contained in | Rate this Exercise | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
![]() 0 ![]() |
An atomic nucleus initially moving at $\SI{420}{\meter\per\second}$ emits an $\upalpha$-particle in the direction of its velocity, and the remaining nucleus slows to $\SI{350}{\meter\per\second}$. If the $\upalpha$-particle has a mass of $\SI{4.0}{u}$ and the original nucleus has a mass of $\SI{222}{u}$, what speed does the alpha particle have when it is emitted?
\newqty{v}{420}{\mps} \newqty{we}{350}{\mps} \newqty{mz}{4.0}{u} \newqty{M}{222}{u} We can determine the speed using momentum conservation during the emission. \ImpulsSchritte \PGleichung{2}{\ssc{p}{N} + p_\alpha &= \ssc{p}{N}' + p_\alpha'} \PGleichung{3}{\ssc{m}{N}\ssc{v}{N} + m_\alpha v_\alpha &= \ssc{m}{N}\ssc{v}{N}' + m_\alpha v_\alpha'} \PGleichung{4}{(M-m_\alpha)v + m_\alpha v &= (M-m_\alpha)\ssc{v}{N}' + m_\alpha v_\alpha'} \AlgebraSchritte \MGleichung{1}{Mv &= (M-m_\alpha)\ssc{v}{N}' + m_\alpha v_\alpha'} \MGleichung{2}{m_\alpha v_\alpha' &= Mv - (M-m_\alpha)\ssc{v}{N}'} \MGleichung{4}{v_\alpha' &= \frac{Mv - (M-m_\alpha)\ssc{v}{N}'}{m_\alpha}} % \PHYSMATH Inserting the numbers leads to \solqty{wz}{\frac{Mv - (M-m_\alpha)\ssc{v}{N}'}{m_\alpha}}{(\Mn*\vn - (\Mn-\mzn)*\wen)/\mzn}{\mps} \al{ v_\alpha' &= \wzf \\ &= \frac{\M \cdot \v - \qty(\M-\mz)\cdot \we}{\mz}\\ &= \wz = \wzIII. }
13:29, 4. Nov. 2020 | alpha im text | Urs Zellweger (urs) | Current Version |
10:59, 23. Dec. 2019 | lsg boxed, diff | Patrik Weber (patrik) | Compare with Current |
21:35, 23. Sept. 2018 | signifikanz, text | Urs Zellweger (urs) | Compare with Current |
11:08, 15. June 2018 | lsg angepasst | Urs Zellweger (urs) | Compare with Current |
23:21, 14. June 2018 | si | Urs Zellweger (urs) | Compare with Current |